题目链接:
Unknown Treasure
问题描述
On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown to the map. The mathematician entered the cave because it is there. Somewhere deep in the cave, she found a treasure chest with a combination lock and some numbers on it. After quite a research, the mathematician found out that the correct combination to the lock would be obtained by calculating how many ways are there to pick m different apples among n of them and modulo it with M. M is the product of several different primes.
输入
On the first line there is an integer T(T≤20) representing the number of test cases.
Each test case starts with three integers n,m,k(1≤m≤n≤1018,1≤k≤10) on a line where k is the number of primes. Following on the next line are k different primes p1,...,pk. It is guaranteed that M=p1⋅p2⋅⋅⋅pk≤1018 and pi≤105 for every i∈{1,...,k}.
输出
For each test case output the correct combination on a line.
样例
sample input
1 9 5 2 3 5sample output
6
题意
求C[n][m]%(P1 * P2 * P3 * ... * pk)
题解
由于n,m都特别大,所以我们用卢卡斯定理对C[n][m]进行pi进制的拆项得到结果ai,用卢卡斯定理的时候p不能太大,否则就没有意义了,所以我们不能直接用M=P1 * P2 * P3 * ... * pk(而且这个不是质数!!!)进行拆项。
然后对所有的ai用中国剩余定理求出C[n][m]%(P1 * P2 * P3 * ... * pk)。
代码
#include#include #include using namespace std;typedef long long LL;LL pi[22], a[22];LL mul(LL a, LL n, LL mod) { LL ret = 0; LL t1 = a, t2 = n; while (n) { //puts("mul"); if (n & 1) ret = (ret + a) % mod; a = (a + a) % mod; n >>= 1; } return ret;}void gcd(LL a, LL b, LL& d, LL& x, LL& y) { if (!b) { d = a; x = 1; y = 0; } else { gcd(b, a%b, d, y, x); y -= x*(a / b); }}LL inv(LL a, LL mod) { LL d, x, y; gcd(a, mod, d, x, y); return d == 1 ? (x + mod) % mod : -1;}LL get_C(LL n, LL m, LL mod) { if (n < m) return 0; LL ret = 1; for (int i = 0; i < m; i++) ret = ret*(n - i) % mod; LL fac_m = 1; for (int i = 1; i <= m; i++) fac_m = fac_m*i%mod; return ret*inv(fac_m, mod) % mod;}LL lucas(LL n, LL m, LL mod) { if (m == 0) return 1LL; return get_C(n%mod, m%mod, mod)*lucas(n / mod, m / mod, mod) % mod;}LL china(int n) { LL M = 1, d, y, x = 0; for (int i = 0; i < n; i++) M *= pi[i]; for (int i = 0; i < n; i++) { LL w = M / pi[i]; gcd(pi[i], w, d, d, y); x = (x + mul(mul(y, w, M), a[i], M)) % M; } return (x + M) % M;}int main() { int tc; scanf("%d", &tc); while (tc--) { LL n, m; int k; scanf("%lld%lld%d", &n, &m, &k); for (int i = 0; i < k; i++) { scanf("%lld", &pi[i]); a[i] = lucas(n, m, pi[i]); } LL ans = china(k); printf("%lld\n", ans); } return 0;}